

The CisLunar Marketplace

Working as a Community Towards a Brighter Future for All

Dan Collins Chief Operating Officer United Launch Alliance

Agenda

- □ Introduction Dan Collins
- Roadmap David Kornuta
- □ Resources James Orsulak
- Transportation Dr. Melissa Sampson
- Human Space Dr. Steven Jolly
- Space Energy Gary Barnhard
- Manufacturing Justin Kugler

Introduction

- □ CisLunar 1000 is the vision of a sustainable economy that can support 1000 people living and working within the space between Earth and the Moon.
- United Launch Alliance has hosted several workshops with key players from the space community to identify opportunities and barriers to developing CisLunar space
- These workshops have led to the formation of the CisLunar Marketplace: a forum in which contributors to future space development can discuss strategies to overcome the obstacles of expanding the space economy and sphere of human influence
- □ The following data has been collected and compiled from the last workshop of the CisLunar Marketplace

The CisLunar Marketplace

America's Ride to Space

- 100 Year Starship
- 490 Bio Tech Inc.
- Accion Systems
- ACME Advanced Materials, Inc.
- Aerospace Medical Association
- Agile Aero
- ATAA
- AIAA Rocky Mountain Sector
- Air Force College
- Alpha Space
- ALS (Adaptive Launch Solutions)
- Andrew Aldrin
- Angelus Funding
- Arconic
- Asia Pacific Aerospace Consultants
- Assn of Manufacturing Technology
- Astrobotics
- Axiom AxoSim Technologies
- Ball Aerospace
- Bank of America Merrill Lynch
- Barclays
- Bessemer Venture Partners
- BioSpace Experiments, Inc.
- Black Sky
- Blue Origin Boeing
- Buzz Aldrin Space
- Caelus Partners
- CalTech CAST
- Chandah Space Technologies
- Coalition for Deep Space Exploration
- CO Office of Economic Dev't & Int'l Trade
- Colorado School of Mines

- Deep Space Industries
- Commercial Space Flight Federation
- Colorado University Boulder
 - Deep Space Systems Deltion Innovations

 - DexMat Inc. Draper Laboratory
 - Edge of Space Partner
 - Effective Space
 - Eli Lilly and Company
 - Embry Riddle Aeronautical Univ.
 - EOS of North America, Inc.
 - FWI
 - Excaliber Almaz
 - FAA/AST
 - Family Office Venture Capital
 - FedEx
 - Fiber Materials Inc
 - Final Frontier Design
 - Finance Technology Leverage Florida Institute of Technology
 - FOMS Inc.
 - Fort Wayne Metals
 - GF Oil & Gas
 - GHO Ventures, LLC
 - Google
 - Greenfield Resources
 - Heinlein Prize Trust Henry Ford Health System
 - Houston Angel Network
 - Humanity Innovation Labs
 - ID Global Partners
 - Immortal Data Incorporated
 - Innovation Labs
 - Intuitive Machines
 - Iridium iSnace
 - JACQ Technologies
 - JesTech

- Jet Propulsion Laboratory
- Kelso Aerospace
- Little Prairie Services
- Lockheed Martin
- Lunar and Planetary Institute
- Made In Space
- Mankins Space Technology
- ManSat
- Mars Interstellar
- Masten Space Systems
- MD Anderson Cancer Center
- Merck Research Laboratories
- Metro Denver Econ, Dev't Corp.
- micro-aRx
- MOOG broad Reach
- Moon Express Nano Racks
- NASA Ames NASA HO
- NASA Johnson Space Center
- NASA Marshall
- NASA STMD
- National Space Biomedical Research Institute
- National Space Society Naval Research Labs
- Near Earth LLC
- New Mexico State University
- NY Center for Space Entrepreneurship
- NewSpace NYC
- Northrop Grumman
- Oceaneering Oceanit
- Offworld Consortium
- Offworld Industries
- Orbital ATK OSD & Virginia Spaceflight Authority
- OSD/NA
- Perella Weinberg Partners

- Planet Labs
- Planetary Resources
- PoliSpace
- Poulos Air & Space
- Purdue University Quilty Analytics
- Rice Univ. Space Institute
- RRF Ventures
- Satellite Applications Catapult
- Schafer Corporation
- Secure World Foundation
- Shakelton Energy
- Shell Exploration and Production Company
- Sierra Nevada
- Silicon Valley Space Center
- SouthWest Analytic Network, Inc.
- Space Angels
- Space Florida
- Space Foundation
- Space Frontier Foundation
- Space Mining Coalition
- Space Policy
- Space Systems Loral Space Tourism Society
- SpaceCom
- Spacepharma
- Surrey Satellite Technology
- Tau Zero Foundation
- Tethers Unlimited/Spiderfab
- TransAstra
- TYVAK United Launch Alliance
- University of Houston
- Urthcast
 - Virgin Galactic
 - Vulcan Aerospace
 - Xtraordinary Innovative Space Partnerships, Inc. XISP-Inc.

The CisLunar Marketplace Roadmap

David Kornuta CisLunar Project Lead Advanced Programs United Launch Alliance

Today to 2022: Foundations

- Improved Access to Space
 - Decreasing launch costs
 - Commercial utilization of ISS
 - Human-rated commercial transportation
 - First commercial LEO habitat
 - Development of rapid recovery vehicle
- Prospecting in the Neighborhood
 - Near Earth Object (NEO) survey

- Lunar polar region exploration
 - Sampling of lunar ice/resources
- Technology Demonstration/ Development
 - Space-to-Space/ground **Power Beaming**
 - Manufacturing ZBLAN & SiC
 - On-orbit additive manufacturing
 - Lunar polar resource extraction

Bigelow B330

Sierra Nevada Dream Chaser

Planetary Resources Prospector

2022 to 2027: The Tipping Point

- Infrastructure Development
 - Commercial/government CisLunar outpost
 - Dedicated orbital manufacturing facilities
 - Orbital propellant refueling tech demo
 - Commercial lunar refueling infrastructure
 - GEO solar power satellite demo
 - ACES/XEUS vehicles deployed

- **Enabled Capabilities**
 - Deep space astronaut training and improved lunar studies
 - Recycling orbital debris and in-space hardware manufacturing
 - On orbit fuel and transfer capability
 - Lunar resource capture and processing demonstration
 - Initial space solar power beaming operation
 - Refuelable CisLunar transportation system established
 - Established L1 staging hub for Earth/Moon Transit

2027 to 2032: Space Industrial Revolution

Enabled Industries

- Commercial crops on orbit
- Space solar power for Earth grid, lunar base and space manufacturing
- Lunar propellant production
- NEO mining missions
- In-space resource utilization
- Lunar manufacturing facilities
- Space tourism beyond LEO
- Robotic servicing of satellites

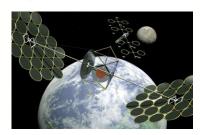
Sustained Expansion

- Commercial lunar base becomes economically viable
- Increasing space solar power terrestrial and space customers
- Manufacturing and space resource utilization established
- CisLunar trade routes established

https://spaceflight.nasa.gov/ gallery/images/exploration/l unarexploration/html/s83_28 324.html

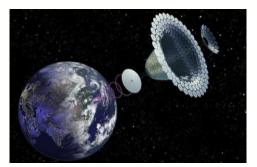
2032 to 2037: Safeguarding Our World

Clean, Affordable Energy


- Space solar power beyond2 GW capability
- Large scale in-space solar plant manufacturing
- All terrestrial and space markets impacted by space solar power

Access to Limitless Resources

- Resource production at industrial scale
- Large scale lunar propellant batch
- Commercial asteroid mining
- Lunar mining operations
- Space supports substantial number of humans


https://er.jsc.nasa.gov/s eh/sei52.GIF

https://science.ksc.nasa.g ov/shuttle/nexgen/Nexge n_Images/solar_power_sa tellite_concept.jpg

2037 and Beyond: New Era of Exploration

Space Solar Power (Mankins)

https://www.nasa.gov/sites/defau It/files/thumbnails/image/nasamars-art-manned-mission.jpg

CisLunar Stepping Stone

- Propellant staging for Mars missions
- Greater than 10 GW space solar powered infrastructure
- Manufacturing capability established beyond CisLunar space
- Mars mission staging node established in CisLunar pace

Conclusion

- □ First time in history that this vision is within grasp
- Sustainability based on viable commerce
- No single entity can make this happen
- By working together today, we secure a better future for all

CISLUNAR MARKETPLACE

RESOURCE REPORT 33rd Annual Space Symposium

James Orsulak, Planetary Resources james@planetaryresources.com

VOLATILES + ENERGY

Water

Life Support Hydrogen

Agriculture

Shielding

Propellant

Oxygen

Methane

Helium-3

STRUCTURES + METALS

Structures

Regolith

Metal

Clay

Precious Metals

Electronics

Catalysts

VOLATILES + ENERGY

Water

Government Stations

Commercial Space Station

Propellant

Launch Providers

In-Space Services

Earth (SBSP) - Moon – Deep Space

Fusion Energy Providers

STRUCTURES + METALS

Structural

Moon Base

Orbital Megastructure

Government

Commercial

Precious Metal

Space Manufacturing

TIMELINE

Private Moon Missions

Resource Prospecting Extraction Development Scaled Delivery & Refining

Commercial Production

2040

2038

Resource Prospecting

Extraction Development Scaled Delivery & Refining

Commercial Production

ISS Commercial Modules

Full Commercial: LEO-L1-Lunar Orbit

Lunar Surface / Orbital Hotel

Vulcan Development

ACES

Distributed Lift Capabilities

2016 2018 2020 2022 2024 2026 2028 2030 2032 2034 2036

CISLUNAR MARKETPLACE

RESOURCE REPORT 33rd Annual Space Symposium

James Orsulak, Planetary Resources james@planetaryresources.com

The CisLunar Marketplace Transportation

Session #1: Business Case

- Crucial connector for sustainable CisLunar marketplace
- Multiple products, customers and suppliers
 - Precious metals, payloads, people, manufacturing, in space rescue
 - Commercial, government, research, security, manufacturing
 - Propellant refueling, servicing, payload processing
- Investment arenas are cryo fuel management, landers, logistics and autonomy
- Infrastructure required for communication, travel corridors and standard interfaces
- Regulation may be needed for public safety, environmental, asset disposal, proximity, and insurance

Session #2: Roadmap

- 2019 Commercial human transportation
- 2021 Demonstrate LH2 & LO2 refinement on lunar surface
- 2021 Distributed Lift
- 2024 Standardize payload integration
- □ 2024 High launch rate
- 2025 Standardization of LH2/LO2 transfer
- 2027 LEO hub for water, oxygen, food, fuel, habitat
- 2029 Space Tourists beyond LEO
- 2031 Habitat at node 1 (lunar orbit)
- 2032 Operational space tug service
- 2035 Lunar hub for water, oxygen, food, fuel, habitat
- 2037 Habitat at node 2 (lunar surface)

Session #3: Intersections

- Miners and refiners
- Orbit debris salvage for manufacture
- \$0.05-.1 solar power enabled by in space manufacturing and propellants
- Serve industry to support space tourism/living
- Infrastructure organizations pair with companies that use infrastructure
- Companies pair with resource groups
- Manufacturing companies strategically aligning core competencies to create holistic offerings
- Communications, remote sensing, and geology are a important enablers for this sector

Discussion

THE CISLUNAR MARKETPLACE HUMAN SPACE

Dr. Steven Jolly Director, Chief Engineer Civil Space Lockheed Martin

Session #1: Business Case

- Space habitats provide a wide variety of customers with services
 - US, foreign, and commercial astronaut training/medical research
 - Space manufacturers infrastructure and transportation node
 - Private citizens participation in space tourism
- Transportation opportunities to support human space
 - Ascent, decent, and lunar lander vehicles
 - Diversity of human rated launch vehicles supporting high launch rate
- Investment and R&D opportunities
 - Technology developed for in space survivability
 - In space resource utilization (in space repairs)
 - Propellant production/storage/transportation/extraction
- Major regulatory issues needing to be addressed
 - International standards of human space flight
 - Legislation on non-government humans in space
 - Questions of sovereignty in space

Session #2: Roadmap

- 2017 Space Station with commercial augmentation
- 2018 US man-rated transportation to LEO
- 2020 Commercially affordable human-rated transportation
- 2023 Lunar orbital outpost with crew of 4
- 2024 Commercial lunar depot
- 2026 Deployment of L1 outpost
- 2027 Commercial lunar base economically viable
- 2030 CisLunar entertainment and quality of life services
- 2031 In space resource utilization
- 2033 LEO settlement
- 2037 Lava tube habitation
- 2042 100's of people living in LEO and on the moon
- 2045 CisLunar healthcare
- 2047 Human mission to Mars

Session #3: Intersections

- Investment challenges because demand is currently potential
- Launch cost needs to decrease to close more business cases
- Need establishment of regulation to protect investments
- Increasing government/commercial business development
- Government may act as an anchor tenant
- Early government funding reduces risk to commercial investment
- Potential future customers and suppliers can share cost of technology development
- Create standard reference orbit for initial commercialization (28.1 vs 51.6 inclination)
- Identify the tipping point at which stable demand begins to enable the economy

DISCUSSION

Energy

Cislunar Market Place Workshop Report
Orchestrating the Technology Development, Demonstration, and
Deployment (TD³) Missions needed to foster
electrical utilities for Cislunar space

Cislunar Workshop Presentation 33rd Annual Space Symposium Colorado Springs, CO April 6, 2017

Presenter:

Gary Pearce Barnhard, President & CEO Xtraordinary Innovative Space Partnerships, Inc. (XISP-Inc)

gary.barnhard@xisp-inc.com www.xisp-inc.com

Session 1 – Energy Key Considerations

- **Sectors** → There are no unilateral sector options
- **Products/Services** → Cislunar Electrical Utility that leverages the economies of scale
- Customers
- → Near term service degraded systems
- → Mid term enhanced new systems
- → Long term immortal systems infrastructure
- Supplier/Resources → Trading the state-of-the-art vs. Satisfactory & Sufficient vs. optimal both a systems engineering and an economics challenge. Robotics and advanced automation are essential to meeting both challenges
- Transportation → Foster the market government(s) role as NACA/IACA and first customers

 Investment/R&D → Matching investment tranches, staging, perceived & actual

 cost/schedule/technical risk, and returns
- Infrastructure -> Elements, linkages, and operational procedures must be defined
 - Regulation → Create a regulatory framework that is informed and driven by the confluence of interests

 necessary to grow the market

Session 2 – Energy TD³ Milestones

Technology Development Technology Demonstration

→ \$\$\$

Technology Deployment

→ \$\$\$\$

Space	2018	2020	2024	2029	2038
Solar	ISS TD ³	LEO TD ³	GEO TD ³	GEO TD ³	GEO TD ³
	3-6 KW	~100 KW	~100 MW	~2 GW	10 GW
Power	SSP Testbed	SSP LEO Demo	SSP GEO Demo	Full SSP	
Space-to-Space	NASA/DOD	NASA/DOD/DOE	NASA/DOD/DOE	Electrical Utility	
Space-to-Luna	Commercial	Commercial	Commercial	Commercial	
Space-to-Earth					
Space-to-NEO	Co-orbiting Test	ComSats Recovery	ComSats Primary	→ \$\$\$	→ \$\$\$\$
Space In situ	Platform Model	Platform TD ³	Platform Ops	→ \$\$\$	→ \$\$\$\$
• Luna-to-Luna	Spectrum Model	Spectrum Apply	Spectrum Allocation		
• Earth-to-Earth	Orbit Slot Model	Orbit Slot Apply	Orbit Slot Allocation		
	LP&L Seed/Angel	LP&L Series A/B/C	LP&L IPO	→ \$\$\$	→ \$\$\$\$
643	Co-orbiting Tests	Co-orbiting Labs	Co-orbiting Facilities	→ \$\$\$	→ \$\$\$\$
		Lunar Test(s)	Lunar Operations	→ \$\$\$	→ \$\$\$\$

NEO Test(s)

Asteroidal Assay

2047 SSP's > 50 GW

Session 3 – Energy Challenge Questions

Sectors → Orchestration is essential in a <u>cooperative+collaborative+competitive</u> market.

Products/Services → Cislunar Electrical Utility demand will scale with <u>demonstrated supply.</u>

Customers → As soon as energy is available it will be used - <u>Are customers really ready</u>?

Supplier/Resources → Establish standards, make economic sense and scale - <u>reality check!?</u>

- → Robotics, advanced automation, and human involvement needed.
- → System trades require iterative and recursive <u>Technology Development</u>, <u>Demonstration</u>, and <u>Deployment</u> (TD³)

Transportation → Match to mission requirements, be sustainable, and affordable to use.

Investment/R&D → Each increment of investment needs to lead to <u>actual customer use.</u>

Infrastructure → Elements, linkages, and operational procedures need definition & buy-in.

Regulation → Consistent long term government commitment to <u>foster the market</u> and help <u>mitigate</u> <u>perceived</u> and <u>actual</u> <u>cost</u>, <u>schedule</u>, and <u>technical risk</u>.

What's Next?

Lunar Power & Light Company an XISP-Inc Consortium

CisLunar Manufacturing

Justin Kugler, Made In Space

Key Themes & Discussions From the February 2017 CisLunar Workshop

- Two Dominant Sectors
 - ▶ 1) Build In Space For Space Applications
 - ▶ 2) Build In Space For Terrestrial Applications
- Potential Products
 - ▶ Biomedical Research in Microgravity
 - ▶ 3D Tissues In Space
 - ▶ New Alloys, Defect-Free Materials
 - Satellite Manufacturing In-Situ
 - ► Local Surface Infrastructure (Moon, Asteroids)
- Barriers
 - Raw Input Acquisition (Terrestrial Feedstock, Space Mining, Orbital Debris Recycling)
 - ▶ Resource Refining and Transportation
 - Need Ability to Buy Transportation "By the Drink"
 - Reliable, Affordable Earth Return
 - ▶ Limited Access to & Lifespan of ISS National Lab
 - ▶ Unclear Property Rights Regime in Space

<u>Session #1</u> Table Discussions

Session #2 Evolution of CisLunar Manufacturing

2017

· Microgravity Materials Proof of Concept

- Products for Space Mining
- Resource

2026

- First Satellite Recycled On-Orbit
- First Water Extraction In Space

2027

- Space Tug Available
- Deep Space Resource Survey

2029

Refineries

- Robotic Satellite

Session #3 Collaboration Opportunities

- Key Intersections
 - ▶ Affordable Transportation & Energy Sources
 - ▶ Policy Framework Needed for Investor Confidence & Strategic Planning
- Big Gaps
 - ▶ NASA Transition Plan from LEO
 - ▶ Clear Picture of Quality & Quantity of Accessible Space Resources
 - ▶ Reliable Path for Quick Prototyping in LEO
- Supplier & Customer Collaborations
 - ▶ Standards, Regulatory Reform, Basic Research with Government Agencies
 - ► Co-Development on Infrastructure
 - Industry-Directed Application Development with National Labs
- ▶ B2B Opportunities
 - Specialization To Avoid Cannibalization
 - ▶ Teaming to Pitch Terrestrial Customers/Partners

Discussion